Build a real-time system monitoring using a Kafka broker and a dashboard using WebSockets. Here is a complete tutorial covering warp10-kafka-plugin, the Warp 10 accelerator feature and a Discovery dashboard.
By following this tutorial, you will be able to handle our Kafka plugin, the Warp 10 accelerator, and Web-sockets usage within Discovery dashboards.
Here are the steps:
In this tutorial we will assume that your computer IP is
192.168.1.1
(you can useipconfig
on Windows orifconfig
on Linux to grab your own IP).
Start a local Kafka broker
For convenience, we will use Docker images and a docker-compose
file to start our broker. Of course, do not use that in production. it is just for test purposes.
Create a file named docker-compose.yml
(customize with your IP address):
---
version: '3'
services:
zookeeper:
image: confluentinc/cp-zookeeper:7.3.2
container_name: zookeeper
environment:
ZOOKEEPER_CLIENT_PORT: 2181
ZOOKEEPER_TICK_TIME: 2000
broker:
image: confluentinc/cp-kafka:7.3.2
container_name: broker
ports:
# To learn about configuring Kafka for access across networks see
# https://www.confluent.io/blog/kafka-client-cannot-connect-to-broker-on-aws-on-docker-etc/
- "0.0.0.0:9092:9092"
depends_on:
- zookeeper
environment:
KAFKA_BROKER_ID: 1
KAFKA_ZOOKEEPER_CONNECT: 'zookeeper:2181'
KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_INTERNAL:PLAINTEXT
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://192.168.1.1:9092,PLAINTEXT_INTERNAL://broker:29092
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
KAFKA_AUTO_CREATE_TOPICS_ENABLE: 'true'
KAFKA_CREATE_TOPICS: order-topic:3:1
KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1
KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1
and start it with:
$ docker-compose up
The Kafka broker is up and running.
Start and configure a local Warp 10 instance
Also for convenience, we will use our Docker image. In this tutorial, we use a persistent volume in /opt/warp10
_3.0 on our local computer.
$ sudo mkdir /opt/warp10_3.0
$ docker run -d -p 8080:8080 -v /opt/warp10_3.0:/data --name warp10 warp10io/warp10:3.0.0-ubuntu
Warp 10 is up and running.
Tokens generation
$ docker exec warp10 ./bin/warp10.sh tokengen tokens/demo-tokengen.mc2
You should get a result like this:
[{
"ident" : "4f8c4edc7a42d112",
"id" : "DemoWriteToken",
"token" : "hQfwWAHcJpHBHgpz2531HtcKAknSzpam6XzbfMcwBvaDZLZM6uWDD2xNF8kGUitE5UzUEWpSdYQQXUQ8VQZc.De9kpFaERFMvbYxD7btd2i6UnyzfTni1F"
},{
"ident" : "5d99a69053407ad2",
"id" : "DemoReadToken",
"token" : "Lj.suW2XZru53seb.y7QulvE_qJ4CyMMEfaz6T.ozaBx79RJ1m1m_c.Bj7.jEGlM2C7MRlSCpKgaCwVXEen6nZOo9KgbC5IakZTc5RvZ3qZX_mq_VXm9vNkANB5J7uWJExgGK6Ht9kAL1W_1tBR1Dl2H9XJiWXKCmz3pYxJv7p7"
}]
Now, we have to install our Kafka plugin.
For convenience, we have to change the permissions of the /opt/warp10_3.0/warp10
directory. Do not do this in production. The user id inside the docker image for warp 10 is 942. You can also create a local user with the same UID.
$ sudo chmod -R a+rwx /opt/warp10_3.0/warp10
$ sudo useradd warp10_docker -u 942 -s /bin/bash
Kafka plugin
You can do this manually or take advantage of our WarpFleet Repository mechanism.
The WarpFleet way
First, you need Gradle on your computer.
Read more about the WarpFleet Gradle plugin |
In /opt/warp10_3.0/warp10
, create a file named build.gradle
:
buildscript {
repositories {
mavenCentral()
mavenLocal()
}
dependencies {
classpath 'io.warp10:warpfleet-gradle-plugin:0.0.3'
}
}
apply plugin: 'io.warp10.warpfleet-gradle-plugin'
warpfleet {
packages = 'io.warp10:warp10-plugin-kafka'
warp10Dir = '/opt/warp10_3.0/warp10'
}
And run:
$ cd /opt/warp10_3.0/warp10
$ gradle wrapper
$ ./gradlew wfInstall
Starting a Gradle Daemon, 2 incompatible and 1 stopped Daemons could not be reused, use --status for details
> Task :wfInstall
○ Retrieving io.warp10:warp10-plugin-kafka:1.0.1-uberjar info
○ Installing io.warp10:warp10-plugin-kafka:1.0.1-uberjar into: /opt/warp10_3.0/warp10
○ Retrieving: io.warp10-warp10-plugin-kafka-1.0.1-uberjar.jar
✔ io.warp10-warp10-plugin-kafka-1.0.1-uberjar.jar retrieved
○ Calculating dependencies
○ Installing dependencies:NG [8s]
✔ Dependency: io.warp10-warp10-plugin-kafka-1.0.1-uberjar.jar successfully deployed
○ Calculating properties
⚠ No configuration found, do not forget to add 'warpscript.plugins.xxx = package.class'
✔ io.warp10:warp10-plugin-kafka:1.0.1-uberjar installed successfully.
Do not forget to check the configuration file: /opt/warp10_3.0/warp10/etc/conf.d/99-io.warp10-warp10-plugin-kafka.conf
BUILD SUCCESSFUL in 9s
1 actionable task: 1 executed
As it is said, we have to configure the plugin in /opt/warp10_3.0/warp10/etc/conf.d/99-io.warp10-warp10-plugin-kafka.conf
, we will do that later.
The manual way
This is a less fun way to install an extension or a plugin. Plugins or extensions may need jar dependencies you will have to handle by yourself. Luckily, the Kafka plugin does not need such dependencies.
Download the Kafka plugin jar in /opt/warp10_3.0/warp10/lib
, you can find the link here.
Create an empty file named 99-io.warp10-warp10-plugin-kafka.conf
in /opt/warp10_3.0/warp10/etc/conf.d
:
Kafka Plugin configuration
Create a new directory with the same user and rights as the others:
$ mkdir /opt/warp10_3.0/warp10/kafka
$ sudo chmod -R a+xrw /opt/warp10_3.0/warp10/kafka
Edit /opt/warp10_3.0/warp10/etc/conf.d/99-io.warp10-warp10-plugin-kafka.conf
:
# -------------------------------------------------------------------------------------
# io.warp10:warp10-plugin-kafka:1.0.1-uberjar
# -------------------------------------------------------------------------------------
kafka.dir=/data/warp10/kafka
kafka.period=1000
warp10.plugin.kafka = io.warp10.plugins.kafka.KafkaWarp10Plugin
The Kafka plugin installation is done!
Warp 10 Accelerator
The Warp 10 Accelerator is an option of the standalone version of Warp 10 that adds an in-memory cache to a Warp 10 instance. This cache covers a certain period of time and can be used to store data for ultra-fast access. Learn more about this feature.
Create and edit /opt/warp10_3.0/warp10/etc/conf.d/99-accelerator.conf
:
$ sudo -u warp10_docker vim /opt/warp10_3.0/warp10/etc/conf.d/99-accelerator.conf
# Enable accelerator
accelerator = true
# 1 hour chunks
accelerator.chunk.length = 3600000000
# 3 chunks
accelerator.chunk.count = 3
# Set to 'true' to preload the accelerator with the persisted data spanning the accelerator time range.
# Preloading can be disabled for setups where the accelerator is used as a temporary side cache only.
accelerator.preload = true
# Number of threads to use for preloading the Warp 10 Accelerator
accelerator.preload.poolsize = 8
# Size of GTS batches to process when preloading the Warp 10 Accelerator
accelerator.preload.batchsize = 1000
# Set to true to take into account the last activity of Geo Time Series when preloading the Warp 10 Accelerator
accelerator.preload.activity = false
We create 3 chunks of 1 hour each.
The Accelerator configuration is done!
Warp 10 restart
$ docker restart warp10
A dummy producer
We will create a small NodeJS script that will produce dummy random data.
In a directory (ie: /home/me/workspace/kafka-producer
), run:
$ npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.
See `npm help init` for definitive documentation on these fields
and exactly what they do.
Use `npm install <pkg>` afterwards to install a package and
save it as a dependency in the package.json file.
Press ^C at any time to quit.
package name: (kafka-producer)
version: (1.0.0)
description:
entry point: (index.js)
test command:
git repository:
keywords:
author:
license: (ISC)
About to write to /home/me/workspace/kafka-producer/package.json:
{
"name": "kafka-producer",
"version": "1.0.0",
"description": "",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "",
"license": "ISC"
}
Is this OK? (yes) yes
$ npm install kafkajs
Then, create /home/me/workspace/kafka-producer/index.js
:
const { Kafka, Partitioners } = require('kafkajs');
const kafka = new Kafka({
clientId: 'my-app',
brokers: ['localhost:9092'],
});
const producer = kafka.producer({ createPartitioner: Partitioners.LegacyPartitioner });
const consumer = kafka.consumer({ groupId: 'test-group' })
process.on('SIGINT', () => {
producer.disconnect().then(() => {
console.log('disconnected');
process.exit();
});
});
async function send() {
await producer.send({
topic: 'test.topic',
messages: [
{
value: JSON.stringify({
title: 'Dummy data',
sensor: {
name: 'io.warp10.demo.sensor.temperature',
timestamp: Date.now(), // ok, I know, you should use UTC time
value: Math.random() * 100.0,
unit: '°C'
}
})
}
]
});
}
producer.connect().then(async () => {
console.log('connected');
await consumer.subscribe({ topic: 'test.topic', fromBeginning: false });
await consumer.run({
eachMessage: async ({ topic, partition, message }) => {
console.log(topic, { message: message.value.toString() }); // for log purpose
},
});
setInterval(async () => await send(), 500); // send a message each 500 ms
});
And run it:
$ node index.js
Kafka consumer
In /opt/warp10_3.0/warp10/kafka
, create a file named test.mc2
(customize with your IP address):
{
'topics' [ 'test.topic' ] // The topic list we listen at
'parallelism' 1
'config' {
'group.id' 'warp10'
'client.id' 'warp10'
'enable.auto.commit' 'true'
'bootstrap.servers' '192.168.1.1:9092' // IP of our broker
}
'macro' <%
'message' STORE // Store the raw Kafka payload
<% $message SIZE 8 == %> // Should be an array containing 8 items
<%
// Extract payload and convert it to a map
$message 'value' GET 'UTF-8' BYTES-> JSON-> 'value' STORE
'Sensor: ' $value 'sensor' GET 'name' GET + LOGMSG
'Value: ' $value 'sensor' GET 'value' GET TOSTRING + $value 'sensor' GET 'unit' GET + LOGMSG
%> IFT
%>
'timeout' 10000
}
At this stage, you will see in /opt/warp10_3.0/warp10/logs/warp10.log
:
[1685611811223] Sensor: io.warp10.demo.sensor.temperature
[1685611811223] Value: 25.354849299417314°C
[1685611811323] Sensor: io.warp10.demo.sensor.temperature
[1685611811323] Value: 84.14009403325606°C
[1685611811427] Sensor: io.warp10.demo.sensor.temperature
[1685611811427] Value: 30.510205614640196°C
[1685611811526] Sensor: io.warp10.demo.sensor.temperature
[1685611811526] Value: 55.10942379581509°C
...
Now, modify test.mc2
to convert our data to a GTS and insert it into Warp 10:
{
'topics' [ 'test.topic' ]
'parallelism' 1
'config' {
'group.id' 'warp10-1'
'client.id' 'w'
'enable.auto.commit' 'true'
'bootstrap.servers' '192.168.1.1:9092' // IP of our broker
}
'macro' <%
'message' STORE // Store the raw Kafka payload
<% $message SIZE 8 == %> // Should be an array containing 8 items
<%
// Extract payload and convert it to a map
$message 'value' GET 'UTF-8' BYTES-> JSON-> 'value' STORE
NEWGTS $value 'sensor' GET 'name' GET RENAME // create a GTS and name it
{
'unit' $value 'sensor' GET 'unit' GET // our unit
'topic' $message 'topic' GET // the concerned topic
} RELABEL 'gts' STORE // add some labels
// generate a datapoint
$gts
// timestamp
$value 'sensor' GET 'timestamp' GET 1 ms * // convert milliseconds to microseconds
NaN NaN NaN // latitude longitude and elevation
$value 'sensor' GET 'value' GET // the value
ADDVALUE
"YOUR WRITE TOKEN" UPDATE
%> IFT
%>
'timeout' 10000
}
Open WarpStudio to test our data by fetching the last minute of data:
[
'YOUR READ TOKEN'
'io.warp10.demo.sensor.temperature' {}
NOW 1 m
] FETCH
ACCEL.REPORT
You should have a chart like this:
As we are using Warp 10 accelerator, fetching last minute fetch data in RAM, and ACCEL.REPORT
should return
"status":true,"accelerated":true
A real-time dashboard displaying live data
Now, it is time to display our live data.
Building a dashboard in WarpStudio
Open WarpStudio and use the "discovery empty dashboard" snippet and modify it to add a line chart ("discovery-tile line, chart" snippet):
// @endpoint http://localhost:8080/api/v0/exec
// @preview discovery
{
'title' 'Live data'
'options' { 'showErrors' true }
'type' 'flex'
'tiles' [
// list of tiles (type discovery-tiles to get some snippets)
{
'type' 'line' 'w' 12 'h' 2
'endpoint' 'ws://localhost:8080/api/v0/mobius' // Use Web sockets
//'endpoint' 'http://localhost:8080/api/v0/exec'
'options' {
'autoRefresh' 500 // each 500 ms
'bounds' { 'yRanges' [ 0 100 ] } // force y axis to be 0-100 range
}
'macro' <%
{
'token' 'YOUR READ TOKEN'
'class' 'io.warp10.demo.sensor.temperature'
'labels' {}
'end' NOW // timestamp or ISO8601 string
'timespan' 1 m // timespan or start
} FETCH
SORT
%>
}
]
}
Execute it and display the "Discovery" tab. You should see something like that:
The Web version of the dashboard
In your workspace, create a file named index.html
:
<html lang="en">
<head>
<title>Live data</title>
</head>
<body>
<discovery-dashboard url="http://localhost:8080/api/v0/exec">
{
'title' 'Live data'
'options' { 'showErrors' true }
'type' 'flex'
'tiles' [
// list of tiles (type discovery-tiles to get some snippets)
{
'type' 'line' 'w' 12 'h' 2
'endpoint' 'ws://localhost:8080/api/v0/mobius' // Use Web sockets
//'endpoint' 'http://localhost:8080/api/v0/exec'
'options' {
'autoRefresh' 500 // each 500 ms
'bounds' { 'yRanges' [ 0 100 ] } // force y axis to be 0-100 range
}
'macro' <%
{
'token' 'YOUR READ TOKEN'
'class' 'io.warp10.demo.sensor.temperature'
'labels' {}
'end' NOW // timestamp or ISO8601 string
'timespan' 1 m // timespan or start
} FETCH
SORT
%>
}
]
}
</discovery-dashboard>
<script nomodule src="https://unpkg.com/@senx/discovery-widgets/dist/discovery/discovery.js"></script>
<script type="module" src="https://unpkg.com/@senx/discovery-widgets/dist/discovery/discovery.esm.js"></script>
</body>
</html>
Open it in your favorite browser to see your live data.
Going further
You can customize your Kafka handler by increasing the parallelism.
You can also pimp your dashboard:
<html lang="en">
<head>
<title>Live data</title>
<style>
@import url('https://fonts.googleapis.com/css?family=Jura:300,400,500,600,700&subset=cyrillic,cyrillic-ext,latin-ext');
body {
font-family: 'Jura', sans-serif;
font-size : 12px;
line-height : 1.52;
background : fixed url(https://robertsspaceindustries.com/rsi/static/images/gridbg_glow.png), url(https://robertsspaceindustries.com/rsi/static/images/common/bg-stars-2560.jpg) repeat;
color : #FFFFFF;
--wc-split-gutter-color : #404040;
--warp-view-pagination-bg-color : #343a40 !important;
--warp-view-pagination-border-color: #6c757d;
--warp-view-datagrid-odd-bg-color : rgba(255, 255, 255, .05);
--warp-view-datagrid-odd-color : #FFFFFF;
--warp-view-datagrid-even-bg-color : #212529;
--warp-view-datagrid-even-color : #FFFFFF;
--warp-view-font-color : #FFFFFF;
--warp-view-chart-label-color : #FFFFFF;
--gts-stack-font-color : #FFFFFF;
--warp-view-resize-handle-color : #111111;
--warp-view-chart-legend-bg : #000;
--gts-labelvalue-font-color : #ccc;
--gts-separator-font-color : #FFFFFF;
--gts-labelname-font-color : rgb(105, 223, 184);
--gts-classname-font-color : rgb(126, 189, 245);
--warp-view-chart-legend-color : #FFFFFF;
--wc-tab-header-color : #FFFFFF;
--wc-tab-header-selected-color : #404040;
--warp-view-tile-background : #3A3C46;
}
.discovery-dashboard {
color: transparent;
}
</style>
</head>
<body>
<discovery-dashboard url="http://localhost:8080/api/v0/exec">
{
'title' 'Live data'
'type' 'flex'
'options' {
'scheme' 'BELIZE'
}
'tiles' [
{
'type' 'area' 'w' 12 'h' 2
'endpoint' 'ws://localhost:8080/api/v0/mobius' // Use Web sockets
'options' {
'autoRefresh' 500 // each 500 ms
'bounds' { 'yRanges' [ 0 100 ] }
}
'macro' <%
[ 'oQ4t3FJSguXk2jOsXx2b3NNY7MdkrroX0VYfQmm0QyCMGsYgLDNHIEqELzS2htyLbKel1tryEuDmor62GcHzhZ5pO2PC3opZ1RwIUEYTDIsYyVN8N8pcyfgkDkbnNG0qtJZwfnmsUCXo3vvRGg0Q5.' 'io.warp10.demo.sensor.temperature' {} NOW 1 m ] FETCH
%>
}
]
}
</discovery-dashboard>
<script nomodule src="https://unpkg.com/@senx/discovery-widgets/dist/discovery/discovery.js"></script>
<script type="module" src="https://unpkg.com/@senx/discovery-widgets/dist/discovery/discovery.esm.js"></script>
</body>
</html>
Here is a complete sample.
Read more
Industrie du futur : les données sur le chemin critique - Partie 3
Forecast with Facebook Prophet and CALL
Les données des dispositifs médicaux
Senior Software Engineer